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Abstract

This paper models the evolution of organizations that allow free entry and

exit of members, such as cities and trade unions. In each period current mem-

bers choose a policy for the organization. Policy changes attract newcomers and

drive away dissatisfied members, altering the set of future policymakers. The

resulting feedback effects take the organization down a “slippery slope” that

converges to a myopically stable policy, even if the agents are forward-looking,

but convergence becomes slower the more patient they are. The model yields a

tractable characterization of the steady state and the transition dynamics. The

analysis is also extended to situations in which the organization can exclude

members, such as enfranchisement and immigration.

Keywords: dynamic policy choice, median voter, slippery slope, endogenous

population, transition dynamics

1 Introduction

This paper studies the dynamic behavior of organizations that are member-owned—

that is, whose members choose policies through a collective decision-making process—
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and allow for the free entry and exit of members. In this context, policy and member-

ship decisions affect one another: different policies appeal to or drive away different

prospective members, and different groups make different choices when in charge of

the organization. As a result, the policy path may drift over time: an initial policy

may attract a set of members wanting a different policy, which in turn attracts other

agents, and so on. It may also exhibit path-dependence: two organizations with iden-

tical fundamentals but different initial policies may exhibit divergent behavior in the

long run.

A prominent example where these issues arise is that of cities or localities. Con-

ceptualize each city as an organization and its inhabitants as members. Cities allow

people to move in and out freely, and their inhabitants vote for local authorities who

implement policies, such as the level of property taxes, the funding of public schools

and housing regulations. The interplay between policy changes and migration can

lead to demographic and socioeconomic shifts interpreted as urban decay, revitaliza-

tion, and gentrification (Marcuse 1986; Vigdor 2010).

The relationship between local taxes and migration has been studied since Tiebout

(1956), which considers a population able to move across a collection of communities

with fixed policies. Epple and Romer (1991) allow for redistributive policies and

location decisions to respond to one another, but they study the problem in static

equilibrium, i.e., under the assumption that any temporary imbalance between the

people living in a community and the policies they want has already resolved itself.

A natural follow-up question to this literature is whether, in a dynamic setting,

communities will converge to a static equilibrium quickly, slowly or not at all. The

main reason convergence may fail to obtain is a fear of slippery slopes. Here is a

simple example: suppose a community with a local tax rate x0 = 0.2 attracts a

population whose median voter, m0, prefers a tax rate x1 = 0.18. Lowering the tax

rate to x1 would attract a different population whose median voter, m1, has bliss

point x2 = 0.16. In turn, the tax rate x2 would beget a median voter wanting a tax

rate x3 = 0.15, and so on. If agents vote myopically, the tax rate will quickly move

not to x1 but to a much lower steady state, say x∞ = 0.1. Foreseeing this, m0 might

prefer not to change the tax rate after all.

This paper shows that, in a dynamic model where both policies and membership

are determined endogenously, communities will, in fact, converge to a steady state,

and all steady states are myopically stable independently of the agents’ discount
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factor. However, dynamic concerns induce agents to make smaller policy changes in

each period than their myopic preferences would dictate. In particular, when the

median voter’s bliss point is closer to the current policy than to the steady state,

convergence is slow—that is, as agents become arbitrarily patient, policy changes in

each period become arbitrarily small. Thus communities observed in the world at

any given time may well fail to be in static equilibrium, and predicting their future

behavior requires an understanding of their transition dynamics. The model also

yields a tractable characterization of these dynamics, which allows us to describe the

equilibrium speed of policy change in terms of the strength of the myopic incentives

for change and the degree of expected disagreement with future pivotal agents.

The location of steady states is characterized as a function of the distribution of

preferences. In general, policy drift leads organizations towards peaks of the distribu-

tion of policy bliss points, which favors centrism if said distribution is unimodal and

symmetric. However, a pocket of agents concentrated at an extreme can also support

a steady state. When there are multiple steady states, which one the organization

converges to depends on its initial policy (i.e., there is path-dependence). Extreme

steady states are more likely if agents’ willingness to join is asymmetric (that is, ex-

tremists are more willing to join a moderate organization than vice versa). Relative to

a setting with a fixed population, the location of steady states is more sensitive to the

distribution of preferences: small changes in the distribution can result in arbitrarily

large changes to the long-run policy.

This paper is connected to several strands of literature. First, as noted previously,

it can be seen as a study of dynamic Tiebout competition. There is a large literature

on the Tiebout hypothesis (see Cremer and Pestieau (2004) for a review), but most

papers in it assume that policies and location decisions must be in static equilibrium,

and hence are silent on the transition dynamics that this paper focuses on.

Second, the model can be applied to other organizations with open membership,

such as trade unions, nonprofits, sports clubs and religious communities, and it is

therefore relevant to existing work about such organizations. For instance, Grossman

(1984) explains why increased international competition may not decrease wages in

a unionized sector: layoffs selectively affect less senior workers, so the median voter

within the union becomes more senior—hence more securely employed, and prone

to making more aggressive wage demands. As in the Tiebout literature, Grossman

(1984) assumes that policy and membership are always in static equilibrium, i.e., that
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they adjust immediately after an external shock; this paper can be seen as providing

a model of the transition dynamics.

Finally, the paper makes several contributions to a growing literature on dynamic

political decision-making (Roberts 2015; Acemoglu, Egorov and Sonin 2015; Bai and

Lagunoff 2011). Most papers in this literature study organizations which can strategi-

cally restrict the entry of newcomers, remove existing members, or deny them political

power (relevant applications include enfranchisement and immigration). Despite the

apparent substantive differences between this setting and mine, my results readily

extend to this context. The reason is that both types of models are driven by the

same tension, namely, that policies and decision-making power are coupled in a rigid

manner, so agents cannot choose their ideal policy without relinquishing control over

future decisions.

There are two main branches in this literature. The first one (Roberts 2015;

Acemoglu, Egorov and Sonin 2008, 2012, 2015) assumes a fixed, finite policy space and

obtains the result that, when agents are patient enough, convergence to a steady state

is “fast”, and steady states may not be myopically stable. The set of steady states

can be found by means of a recursive algorithm, but not described explicitly, and it

is sensitive to the set of feasible policies. What I show is that, if a continuous policy

space is assumed, these results are overturned: all steady states are myopically stable,

and when agents are patient, there is slow convergence which can be characterized

explicitly (in some cases, in closed form).

The second branch (Jack and Lagunoff, 2006; Bai and Lagunoff, 2011) considers

continuous policy spaces and obtains some important results related to the ones in this

paper; in particular, Bai and Lagunoff (2011) show that, in their model, the steady

states of “smooth” equilibria are stable under the assumption of a fixed decision-maker

(in our setting, this is equivalent to myopic stability). However, they do not provide

a general characterization of which steady state the model will converge to, nor of

the transition dynamics. Moreover, their analysis applies only to smooth equilibria,

which do not exist generically. In contrast, I derive results that apply either to all

equilibria or to classes of equilibria for which I can provide existence conditions.

On a technical note, the present paper is also the first in this literature to tractably

analyze a setting that violates the single-crossing assumption on preferences—a nec-

essary complication in a context with free entry and exit, stemming from the fact that

agents unhappy with the chosen policy can cut their losses by leaving the organization.
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The paper is structured as follows. Section 2 presents the model. Section 3 proves

some fundamental properties of all equilibria and characterizes the organization’s

policy in the long run. Section 4 characterizes the transition dynamics. Section 5

adapts the results to a setting without free entry and exit. Section 6 discusses some

implications of the results and revisits their relationship with the existing literature.

Section 7 is a conclusion. All the proofs can be found in the Appendices.

2 The Model

There is an organization (henceforth, a club) existing in discrete time t = 0, 1, . . . and

a unit mass of agents distributed according to a continuous density f with support

[−1, 1]. We refer to an agent’s position α in the interval [−1, 1] as her type. All agents

are potential members of the club.

At each integer time t ≥ 1, two events take place. First there is a voting stage,

in which a set of incumbent members It−1 ⊆ [−1, 1] vote on a policy xt ∈ [−1, 1] to

be implemented during the period [t, t + 1). Immediately after, in the membership

stage, all agents observe xt and decide whether to be members during the upcoming

period [t, t+ 1). Agents can freely enter and leave the club as many times as desired

at no cost. The set of agents who choose to be members at time t constitutes It, the

set of incumbent members at the t + 1 voting stage.1 At t = 0 the game starts with

a membership stage; the club’s initial policy x0 is exogenously given.

The essential feature of this setup is that membership affects both an agent’s

utility and her right to vote. Agents will decide whether to be in the club based on

their private payoffs, since the impact of any individual agent’s vote on future policies

is nil, but aggregate membership decisions will influence future policies.

Preferences

An agent α has utility

Uα ((xt)t, Iα) =
∞∑
t=0

δtIαtuα(xt),

1The assumption that agents vote the period after joining rules out equilibria in which agents
who dislike the current policy might join because they expect the policy to immediately change to
their liking. Equivalent results would be obtained by assuming that agents can enter or leave at any
time t ∈ R≥0 but only gain voting rights after being members for a short time ε ∈ (0, 1).
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where Iαt = 1{α∈It} denotes whether α is a member at time t. In other words, the

agent can obtain a payoff uα(xt) from being a member of the club, or a payoff of zero

from remaining an outsider. δ ∈ (0, 1) is a common discount factor. We make the

following assumptions on u.

A1 uα(x) : [−1, 1]2 → R is C2.

A2 There are 0 < M ′ < M such that M ′ ≤ ∂2

∂α∂x
uα(x) ≤M for all α, x.

A3 uα(α) > 0 for all α ∈ [−1, 1].

A4 For a fixed α0, uα0(x) is strictly concave in x with peak x = α0.

A5 For a fixed x0, ∂uα(x0)
∂α

> 0 if α < x0 and ∂uα(x0)
∂α

< 0 if α > x0.

The essence of assumptions A2-A5 is that agent α has bliss point α and wants to be

in the club if the policy xt is close enough to α; higher agents prefer higher policies;

and the set of agents desiring membership is always an interval. A useful example for

building intuition is the quadratic case: uα(x) = C − (α− x)2, where C > 0. Finally,

we impose the following tie-breaking rule.

A6 An agent α’s preferences at time t0 are as defined by Uα when comparing any

two paths ((xt)t, Iα), ((x̃t)t, Ĩα) with membership rules Iα, Ĩα that are not both

zero for all t ≥ t0. However, if Iαt = Ĩαt = 0 for all t ≥ t0, then α prefers

((xt)t, Iα) to ((x̃t)t, Ĩα) iff uα(xt0) ≥ uα(x̃t0).

In other words, if an agent expects to permanently quit the organization immediately

after the current voting stage, she breaks ties in favor of the path with the better

current policy. This assumption prevents members who intend to quit from making

arbitrary choices out of indifference.2

Solution Concept

We will use Markov Voting Equilibrium (MVE) (Roberts 2015; Acemoglu et al. 2015)

as our solution concept. This amounts to imposing two simplifying assumptions on

our equilibrium analysis. First, rather than explicitly modeling the voting process,

2This tie-breaking rule would be uniquely selected if the game were modified to add a small time
gap between the voting and membership stages, so that outgoing members at time t would receive
a residual payoff εuα(xt0) from the policy xt0 chosen right before they leave.
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we assume that only Condorcet-winning policies can be chosen on the equilibrium

path, as otherwise a majority could deviate to a different policy. Second, we focus

on Markov strategies. That is, when votes are cast at time t, voters only condition

on the set of incumbent members, It−1; when entry and exit decisions are made, the

only state variable is the chosen policy, xt.
3

Definition 1. Let L([−1, 1]) be the Lebesgue σ-algebra on [−1, 1]. A Markov strategy

profile (s̃, I) is given by a membership function I : [−1, 1]→ L([−1, 1]), and a policy

function s̃ : L([−1, 1])→ [−1, 1] such that s̃(I) = s̃(I ′) whenever I and I ′ differ by a

set of measure zero.

We denote by s = s̃◦I the successor function. A policy x induces a set of members

I(x), who will vote for a policy s̃(I(x)) = s(x) in the next period. Hence, an initial

policy y leads to a policy path S(y) = (y, s(y), s2(y), . . .).

Definition 2. An MVE is a Markov strategy profile (s̃, I) such that:

1. Given a policy x, α ∈ I(x) iff uα(x) ≥ 0.

2. Given a set of voters I, the policy path S(s̃(I)) is a Condorcet winner among

the available policy paths. That is, for each y 6= s̃(I), a weak majority of I

weakly prefers S(s̃(I)) to S(y).4

From here on we describe equilibria in terms of I and s rather than I and s̃.

This is without loss of detail, as the set of voters is always of the form I(x) on the

equilibrium path.5

We now provide some definitions that will be useful for our analysis. x ∈ [−1, 1]

is a steady state of a successor function s if s(x) = x. x is stable if there is a

neighborhood (a, b) 3 x such that, for all y ∈ (a, b), st(y) −−−→
t→∞

x. We refer to the

largest such neighborhood as the basin of attraction of x.

We define the median voter function m as follows: for each policy x, m(x)

is the median member of the induced voter set I(x), i.e.,
� m(x)

−1
f(y)1{α∈I(x)}dy =� 1

m(x)
f(y)1{α∈I(x)}dy.6 Finally, we will often be interested in whether an equilibrium

3Our solution concept is equivalent to pure-strategy Markov Perfect Equilibrium (MPE), if in
each voting stage two office-motivated politicians engage in Downsian competition.

4Note that only one-shot deviations are considered: after a deviation to y 6= s(x), it is ex-
pected that the MVE will be followed otherwise, i.e., the policy path will be (y, s(y), . . .) instead of
(s(x), s2(x), . . .). This is without loss of generality.

5If an agent deviates from her equilibrium membership decision, the resulting set of members
will differ from I(x) by a set of measure zero, so tomorrow’s policy will be unchanged.

6m(x) is uniquely defined if I(x) is an interval, as will turn out to be the case.
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satisfies the Median Voter Theorem (MVT), i.e., whether the Condorcet-winning

policy for a voter set I(x) is also m(x)’s optimal choice. Formally, given a successor

function s and a set X ⊆ [−1, 1], we will say the MVT holds in X if, for each x ∈ X
and all y ∈ [−1, 1], m(x) weakly prefers S(s(x)) to S(y).

Examples

As an illustration, we map the model to two concrete examples. The first one is

Tiebout-style policy competition between cities. Assume that there is a universe of

“normal” cities c ∈ [−1, 1], and a “special” city c∗. Cities differ in two ways. First,

each city has a policy xt(c) ∈ [−1, 1], denoting a certain level of taxation and public

goods in city c at time t. For example, a higher x represents higher local taxes which

finance better public schools and amenities. Second, c∗ has an intrinsic attribute that

makes it more desirable than normal cities (good weather, a strong economy, etc.).

For simplicity, suppose that each normal city has a positive mass of immobile voters

tied to it, and the median immobile voter in city c has bliss point c, so that xt(c) = c

for all t, c. In addition, there is a unit mass of mobile agents in the model, whose

bliss points are distributed according to a density f . x0(c∗) is exogenous.

We are interested in the policy path of c∗ and the behavior of mobile agents. At

each time t, each mobile agent α chooses a city to live in. Her flow payoff from

choosing c is uα(x, c) = C1c=c∗− (xt(c)−α)2, where C > 0 is the intrinsic value of c∗.

Clearly her decision boils down to a binary choice: she should live either in c∗ or in

her most-preferred normal city, c = α, yielding a flow payoff of zero. Living anywhere

but in c∗ is equivalent to leaving the club in the general model.

The second example we discuss is that of trade unions. Assume an economy with a

unionized firm and a larger competitive (non-union) sector. Firms offer employment

contracts (w, l) consisting of a wage w and a family leave policy l. The marginal

productivity of all workers is normalized to 1, and a leave policy l signifies that the

worker only works a fraction 1− l of the time. In equilibrium, competitive firms are

willing to offer any contract of the form (1− l, l); the competitive sector is assumed to

be large enough that all such contracts are available. The union, through collective

bargaining, extracts a wage wu > 1 from the unionized firm, so its leadership can

bargain for any contract of the form (wu − l, l), but the same contract must apply to

all unionized workers. As in Grossman (1983), assume the union bargains on behalf
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of its median voter.

Workers differ in their taste for family leave. A worker of type α has flow payoff

ũα(w, l) = w+αv(l), where v(0) = 0 and v is smooth, increasing and strictly concave

in l. Workers can move freely between firms, including to the unionized firm; upon

joining the latter, they automatically become union members.7

Of all the competitive firms, a worker α prefers to join one offering l = l∗(α),

where v′(l∗(α)) = 1
α

. Let uα(l) = ũα(wu− l, l)− ũα(1− l∗(α), l∗(α)) be α’s net utility

from joining the union sector when the union has bargained for a contract (wu− l, l).
Up to a relabeling, u satisfies A1-5 and hence the model applies without changes.

3 Equilibrium Analysis

In this Section we prove some fundamental properties of all MVEs, which in particular

allow us to characterize the club’s policy in the long run. We start by solving for the

equilibrium membership strategy, which is simple:

Lemma 1. In any MVE, I(y) = [y − d−y , y + d+
y ] is an interval, and d−y , d

+
y > 0 are

given by the condition uy−d−y (y) = uy+d+y
(y) = 0.

Since members can enter or leave at any time, it is optimal for α to join whenever

the flow payoff of the current policy, uα(x), is positive, and leave when it is negative;

the Lemma then follows from Assumptions A3 and A5. An immediate corollary is

that m is strictly increasing and C1. Additionally, since I(x) is uniquely determined,

we can describe MVEs solely in terms of successor functions.

Before characterizing s in general, it is instructive to consider two simple special

cases. First, suppose that I(y) = I is independent of y (for instance, I(y) ≡ [−1, 1],

i.e., everyone always prefers to be in the club). In this case, regardless of the current

policy y, the Condorcet winner is the bliss point of the median member of I. Second,

suppose that δ = 0, i.e., agents are myopic. Given an initial policy y and set of

members I(y), the Condorcet winner is the bliss point of m(y), and the policy path

will be (y,m(y),m2(y), . . .), which converges to a myopically stable policy m∗(y) =

limk→∞m
k(y). In both scenarios, the simplicity of the solution stems from the lack

of tension between current payoffs and future control: in the former case there is no

link between them, while in the latter case they are linked but voters do not care.

7This is a common arrangement is known as a “union shop”.

9



As a first step towards solving the general case we show that equilibrium paths

are always monotonic.

Proposition 1. In any MVE, for any y, if s(y) ≥ y then sk(y) ≥ sk−1(y) for all k,

and if s(y) ≤ y then sk(y) ≤ sk−1(y) for all k.

To see why this must be the case, imagine an equilibrium path (x0, x1, . . .) that

increases up to xk (k > 0) and decreases afterwards. Then S(xk) must be a Condorcet

winner in I(xk−1), and S(xk+1) must be a Condorcet winner in I(xk). In particular, a

majority in I(xk−1) must prefer S(xk) to S(xk+1) but a majority in I(xk) must prefer

the opposite. This is impossible because S(xk+1) has a lower average policy than

S(xk), while the group I(xk) contains agents with higher bliss points than I(xk−1).8

Our next result characterizes the long-run behavior of any MVE satisfying the MVT.

Proposition 2. In any MVE s and for any y:

(i) If m(y) = y then s(y) = y.

(ii) If m(y) > y then m∗(y) > s(y) ≥ y. Moreover, if the MVT holds in [y,m∗(y)]

then s(y) > y and sk(y) −−−→
k→∞

m∗(y).

(iii) If m(y) < y then m∗(y) < s(y) ≤ y. Moreover, if the MVT holds in [m∗(y), y]

then s(y) < y and sk(y) −−−→
k→∞

m∗(y).

−1 1
−1

1

x∗
1 x∗

2 = 0 x∗
3

x

m(x)

s(x)
x

Figure 1: Convergence to steady states in MVE

8Analogous results are shown in Roberts (2015) and Acemoglu et al. (2015). The proof here is
more involved because, owing to the infinite policy space, we have to rule out non-monotonic paths
that never reach their supremum or infimum.
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In other words, the steady states of any MVE s satisfying the MVT are simply the

fixed points of the mapping y 7→ m(y). Moreover, stable (unstable) steady states of

s are also stable (unstable) fixed points of m, and their basins of attraction coincide.

The intuition for why we should observe s(x) ≤ x if m(x) < x and vice versa is

straightforward: if m(x) < x for x in an interval (x∗, x∗∗), any policy in that interval

attracts a set of voters whose median wants a lower policy. The main conclusion

of Proposition 2 is that slippery slope concerns cannot create myopically unstable

steady states, that is, s(x) 6= x if there is a myopic incentive to change the policy.

The logic behind the proof is as follows. Suppose m(x) < x, but m(x) is afraid of

further policy changes if she moves to any y < x. If m(x) chooses a slightly better

policy y = x−ε, her flow payoff tomorrow will increase by roughly ε
∣∣∂u
∂x

∣∣. In exchange,

she will relinquish control over the continuation to a slightly different voter, m(x− ε).
Because they have similar preferences (Assumption A2), m(x− ε)’s optimal choice is

also approximately optimal for m(x). Hence the cost of losing control is small, that

is, no higher than M(m(x) − m(x − ε))
∑

t δ
k|sk(x) − sk(s(x − ε))|. If S(s(x − ε))

converges to S(x) pointwise as ε→ 0, this loss is of order o(ε), so m(x) should deviate

to y = x− ε for ε small enough. If not, it can be shown that m(x) must be indifferent

between S(x) and limε→0 S(s(x− ε)), and an analogous argument can then be made.

Figure 1 illustrates the equilibrium properties stated in Proposition 2 in an ex-

ample with three steady states: x∗1 and x∗3 are stable, while x∗2 is unstable. This

alternation of stable and unstable steady states occurs in general as long as m is

well-behaved. Formally, in the rest of the paper we will assume the following:

B1 The equation m(y) = y has finitely many solutions x∗1 < x∗2 < . . . < x∗N . In

addition, m′(x∗i ) 6= 1 for all i.

Corollary 1. m has an odd number of fixed points. For odd i, m′(x∗i ) < 1 and x∗i is

a stable steady state of every MVE; for even i, m′(x∗i ) > 1 and x∗i is unstable.

Our last result in this Section guarantees that, in a sizable neighborhood of each

stable steady state, every equilibrium satisfies the MVT, and hence the main con-

clusion of Proposition 2 applies. In addition, within the same neighborhood every

equilibrium must be monotonic (a stronger property than path-monotonicity) and an

equilibrium restricted to this neighborhood must exist.
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Proposition 3. Let x∗ be such that m(x∗) = x∗ and m′(x∗) < 1; let x∗∗∗ < x∗ < x∗∗ be

the unstable steady states adjacent to x∗. Then an MVE restricted to I(x∗)∩(x∗∗∗, x∗∗)

exists,9 and any MVE is weakly increasing and satisfies the MVT in I(x∗)∩(x∗∗∗, x∗∗).

The reason these results may fail to hold outside of I(x∗)∩ (x∗∗∗, x∗∗) is that they

rely on pivotal voters not leaving the club on the equilibrium path; when pivotal

voters quit the club at different times, the logic that voters with higher bliss points

should like higher paths does not always apply.10

We finish this Section with two remarks. First, an alternative approach to solving

for MVEs would be to study a game in which, given a policy x, the agent m(x) is by

assumption given direct control over tomorrow’s policy.11 In this closely related game,

the main conclusion of Proposition 2 holds for all Markov equilibria. Second, as we

will see next, under some conditions we will be able to guarantee the existence of MVE

that are monotonic and satisfy the main conclusion of Proposition 2 everywhere.

4 Transition Dynamics

This Section analyzes the transition dynamics of the model in more detail. Without

loss of generality, we restrict our analysis to the right side of the basin of attraction of

a stable steady state, that is, an interval [x∗, x∗∗) such that m(x∗) = x∗, m(x∗∗) = x∗∗

and m(y) < y for all y ∈ (x∗, x∗∗).12

We begin by noting that, under mild conditions, convergence to a steady state

is far from instant, and becomes arbitrarily slow if agents are arbitrarily patient.

Formally, say m(x) ∈ (x∗, x∗∗) is reluctant if um(x)(x) > um(x)(x
∗), i.e., m(x) would

rather stay at x than move instantly to x∗.13 If so, let z(x) be the unique policy in

(x∗,m(x)) for which um(x)(x) = um(x)(z(x)).

Proposition 4. If m(x) is reluctant, then, for all y < z(x), ∃K(y) > 0 such that, for

any δ and any MVE s of the game with discount factor δ, min{t : st(x) ≤ y} ≥ K(y)δ
1−δ .

9s is a MVE restricted to [a, b] if it is a MVE when the policy space is restricted to [a, b].
10For instance, let α = 0.6, α̃ = 0.5, and S = (0.7, 0.1), T = (0.65, 0) be two-period policy paths.

If α, α̃ never leave under either path, Uα(S) − Uα(T ) > Uα̃(S) − Uα̃(T ) by A2; but if uα(0) < 0 it
is possible that Uα(S)− Uα(T ) < Uα̃(S)− Uα̃(T ). By the same logic, the set of voters preferring S
to T may not be an interval, so a winning coalition need not contain the median voter.

11This approach has been taken in the literature, e.g., in Bai and Lagunoff (2011).
12For any y ∈ (x∗, x∗∗), I(y) never wants to choose a policy outside of (x∗, x∗∗), so s|(x∗,x∗∗) can be

studied in isolation. Results for a basin of attraction of the form [x∗, 1] or [x∗∗∗, x∗] are analogous.
13For instance, in the quadratic case, if m′(x) > 1

2 for all x then every agent is reluctant.
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The reason is simply that, if this condition were violated, m(x) would rather stay

at x forever.14 Thus, if there are reluctant agents, knowing the club’s long-run policy

is not enough to characterize the agents’ utility even as δ → 1, unlike in related models

(cf. Acemoglu et al. 2012); further analysis of the transition path is necessary.

In the remainder of this Section we propose a natural class of equilibria, which

we call 1-equilibria (henceforth 1Es), and study their transition dynamics. There are

two reasons to focus on 1Es. The first is tractability: 1Es have a simple structure,

and their transition dynamics can be explicitly characterized in the limit as agents

become more patient. The second is robustness: 1Es are guaranteed to exist under

some conditions we will provide, while other types of equilibria (including smooth

equilibria) cannot be guaranteed to exist. We begin with a definition of 1Es and two

related concepts.

Definition 3. Let s be a successor function on [x∗, x∗∗]. s is a 1-function if there is

a sequence (xn)n∈Z such that xn+1 < xn for all n, xn −−−−→
n→−∞

x∗∗, xn −−−→
n→∞

x∗, and

s(x) = xn+1 if x ∈ [xn, xn−1). We call (xn)n the recognized sequence of s.

s is a 1-equilibrium (1E) if it is a 1-function and an MVE.

s is a quasi-1-equilibrium (Q1E) if it is a 1-function such that (1−δ)Um(xn)(S(xn+1)) =

um(xn)(xn+1) for all n.

x∗ x3x2 x1 x0

x

s(x)

m(x)

x

Figure 2: 1-equilibrium for uα(x) = C − (α− x)2, m(x) = 0.7x, δ = 0.7

In a 1E, the chosen policies are always elements of the recognized sequence (xn)n.

xn today leads to xn+1 tomorrow; if the initial policy is not part of the recognized

sequence, but is between xn and xn−1, then xn+1 is chosen, and the path follows the

14A partial converse holds: if um(x)(x
∗) > um(x)(x) for all x then, for all y ∈ (x∗, x), min{t :

st(x) ≤ y} ≤ K̃(y), with K̃(y) independent of δ.

13



recognized sequence thereafter. An illustration is given in Figure 2. The notion of

Q1E is useful to study because Q1Es are closely related to 1Es, but are easier to

construct. The following Proposition summarizes the relationship between the two.

Proposition 5.

(i) Every 1E is also a Q1E.

(ii) A Q1E exists. Moreover, for each x ∈ (x∗, x∗∗), there is a Q1E sx with x0 = x.

(iii) In any Q1E, for all x ∈ [xn, xn−1) and for all k, a majority in I(x) prefers

S(xn+1) to S(xk).

(iv) Any Q1E such that m(xn) < xn+2 for all n is a 1E within [x∗,m−1(x∗ + d+
x∗)].

To see why 1Es are also Q1Es, consider a 1E s with recognized sequence (xn)n. By

construction, a majority in I(xn) prefers S(xn+1) to S(xn+2). But, for any x in a left-

neighborhood of xn, a majority of I(x) prefers S(xn+2) to S(xn+1). Due to the fact

that S(xn+1) = (xn+1, S(xn+2)), a voter α prefers S(xn+1) to S(xn+2) iff uα(xn+1) ≥
(1 − δ)Uα(S(xn+1)), and it can be shown that the set of voters with this preference

is of the form [α∗, 1]. Then we must have α∗ = m(xn). By continuity, m(xn) is

indifferent between S(xn+1) and S(xn+2), i.e., (1− δ)Um(xn)(S(xn+1)) = um(xn)(xn+1).

Part (ii) of Proposition 5 guarantees that Q1Es always exist—in fact, there is a

continuum of them. Part (iii) is a partial converse of (i): it shows that, in a Q1E,

no deviations to other policies on the recognized sequence are possible. To see why

I(xn−1) will not deviate to S(xn+2), for instance, note that m(xn) is indifferent be-

tween S(xn+1) and S(xn+2), so m(xn−1) prefers S(xn+1) to S(xn+2), and is indifferent

between S(xn) and S(xn+1) by construction. Equivalently, then, the only reason a

Q1E may fail to be a 1E is if a majority wants to deviate off the recognized sequence.

Intuitively, such deviations will not be desirable if the median voter, m(xn), is far

to the left of the first few elements of the sequence following xn. To see why, note that,

if m(xn) ∈ [xk, xk−1), deviating to a policy y ∈ (xl, xl−1) with l < k would be even

worse than deviating to xl, while deviating to y ∈ (xl, xl−1) with l > k would be worse

than deviating to xl−1. Hence the only deviations m(xn) might prefer are deviations

to y ∈ (xk, xk−1). In particular, picking y = m(xn) is better than deviating to xk.

But such a deviation will still be unprofitable if S(xn+1) is too strongly preferred to
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S(xk). This is the idea behind part (iv); a more powerful result along these lines will

be given in the next subsection.

Finally, note that, in a 1E,m(xn)’s averaged per-period utility equals um(xn)(xn+1).

Hence her net gain from not staying at xn forever, V (m(xn)) := (1−δ)Um(xn)(S(xn+1))−
um(xn)(xn), is approximately proportional to the equilibrium speed of policy change;

specifically, it equals (xn − xn+1)
∣∣∣∂um(xn)(y)

∂y

∣∣∣ for some y ∈ [xn+1, xn].

Continuous Time Limit

We now characterize the limit of 1Es as the time gap between rounds of voting

becomes arbitrarily small. This can be taken as an approximation of a setting in which

voting happens periodically (e.g., at annual elections), but often enough relative to

the agents’ time horizon. The same results will also allow us to characterize the limit

of 1Es with a fixed time gap between periods as δ → 1.

Denote δ = e−r. We will work with the following objects. First, for each j ∈
N, consider a version of the game from Section 2 in which policy and membership

decisions are made at every time t ∈ {0, 1
j
, 2
j
, . . .} instead of at every integer time. We

will call this the j-refined game, and denote a Q1E of this game by sj. In addition,

for each t ∈ R≥0, we denote by sj(x, t) the equilibrium policy at time t if the initial

policy is x and sj is played—that is, sj(x, t) = s
btjc
j (x). Note that this game is, up to

a relabeling, equivalent to the model in Section 2 with discount factor δj = e−
r
j .

Finally, we define a continuous limit solution (CLS) as a function s(x, t) : [0,+∞)×
[x∗, x∗∗)→ [x∗, x∗∗) with the following properties: s(x, t+ t′) ≡ s(s(x, t′), t); s(x, 0) ≡
x; s is weakly decreasing in t; s(x, t) −−→

t→0
x for all x; and Um(x)(S(x)) = um(x)(x) for

all x ∈ (x∗, x∗∗), where Uα(S(x)) =
�∞

0
re−rt max(uα(s(x, t)), 0)dt.

The following Proposition relates the CLS to the Q1Es of the j-refined games.

Proposition 6. Suppose that m ∈ C2 and a CLS s exists. Then:

(i) s is the unique CLS, and s is C1 as a function of t.

(ii) For any sequence (sj)j, where sj is a Q1E of the j-refined game, for all x and

t, sj(x, t) −−−→
j→∞

s(x, t).

(iii) There is δ < 1 such that, for all δ > δ, all Q1Es of the discrete-time game with

discount factor δ are 1Es.
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The intuition behind a CLS is the following. Fix x, and take a sequence (sj)j

of Q1Es of the j-refined games with xj0 = x. Recall that Um(xjn)(Sj(xj(n+1))) =

um(xjn)(xj(n+1)) for all j, n.15 Suppose that, as j →∞, the transition paths Sj(x) =

(sj(x, t))t converge pointwise to a continuous path S(x). Then the differences xj0−xj1
go to zero, and in the limit, Um(x)(S(x)) = um(x)(x). This is why we require this

condition of a CLS. Part (ii) of Proposition 6 is a converse to this argument: it shows

that, when a CLS exists, the transition paths of all Q1Es must converge to it as

j →∞.

Whether a CLS exists is a property of the primitives u and m; it can be determined

in isolation from our game. We can both verify whether a CLS exists and calculate it

explicitly, as follows. Denote by e(x) = − 1
∂s(x,t)
∂t
|t=0

the instantaneous delay of a CLS

at x. If Um(x)(S(x)) = um(x)(x) for all x, then, differentiating with respect to x,

m′(x)
∂Um(x)(S(x))

∂α
= m′(x)

∂um(x)(x)

∂α
+
∂um(x)(x)

∂x
. (1)

The key observation is that ∂
∂x

∂Um(S(x))
∂α

=
(
∂um(x)(x)

∂α
− ∂Um(S(x))

∂α

)
re(x). Hence, differ-

entiating Equation 1 yields an equation that pins down e(x). After rearranging, we

find

−∂u
∂x
re(x) = 2m′

∂2u

∂α∂x
+
∂2u

∂x2
+ (m′)2

(
∂2u

∂α2
− ∂2Um(x)(S(x))

∂α2

)
− m′′

m′
∂u

∂x
, (2)

where u stands for um(x)(x). This is an integral equation because ∂2U
∂α2 is evaluated at

S(x), which depends on e(y) for y ∈ [x∗, x). But we can solve it forward, starting

at x∗, to find e(x) and, with it, the unique CLS. In fact, a CLS always exists unless

the function e(x) that solves Equation 2 turns negative. This is guaranteed not to

happen if the forces pulling towards policy change are not too great:

Proposition 7. Holding u constant, there exist B, B′, B′′ > 0 such that, if x−m(x) ≤
B, m′(x) ∈ [1−B′, 1 +B′] and m′′(x) ≥ −B′′ for all x, then a CLS exists.

The quadratic case is useful for illustrative purposes. In that case, for x ∈ I(x∗),

Equation 2 reduces to

re(x) =
2m′(x)− 1

x−m(x)
+
m′′(x)

m′(x)
, (3)

15In this argument, we write Um(x)((xt)t) = (1− δ)∑ δtIαtuα(xt) to simplify notation.
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x∗

x
s(x, 1)

m(x)

e(x)

x

Figure 3: A continuous limit solution

so the speed of convergence can be calculated in closed form. Equation 3 reflects

three forces at work in determining e(x). First, the policy changes more slowly (e(x)

is higher) when the myopic incentive for policy changes, x−m(x), is small. Second,

the policy changes more slowly when m′(x) is high. The reason is that changing the

policy to x−ε entails yielding control to another agent m(x−ε). The higher m′ is, the

more costly this loss of control becomes. Third, the policy changes more slowly when

m′′(x) is high. The reason is that, when m is convex, m′(x) is higher than m′(x− ε);
hence the agent m(x) yields control to will not be as concerned about the behavior

of her own successors, and so will make faster policy changes than m(x) would like.

These forces are illustrated in Figure 3.

Finally, part (iii) of Proposition 6 guarantees that, when there is a CLS, all Q1Es

must be true 1Es when agents are patient enough. The reason is related to our

discussion of Proposition 5: as the transition paths of Q1Es approach the CLS, they

must feature smaller and smaller jumps between consecutive policies; in this scenario,

deviations off the recognized sequence are never majority-preferred.

We conclude this Section with a few observations. First, the speed of policy change

in a CLS is exactly inversely proportional to the agents’ patience:

Remark 1. If s(x, t) is a CLS for discount rate r, then s̃(x, t) ≡ s
(
x, r̃

r
t
)

is a CLS for

discount rate r̃. The respective instantaneous delays e(x), ẽ(x) satisfy ẽ(x) = r
r̃
e(x).

The reason is that changing r is equivalent to a relabeling of the time variable.

Second, when a CLS exists, Proposition 6 and Equation 2 together yield an asymptotic

characterization of the transition path for all 1Es of the game from Section 2 when
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agents are patient.16 Formally, let e1(x) be the solution to Equation 2 for r = 1.

Then, for any y < x and any collection of 1Es sδ for δ ≥ δ,

(1− δ) min{t : stδ(x) ≤ y} −−→
δ→1

� x

y

e1(z)dz. (4)

This is, in effect, a more precise version of Proposition 4. Third, recall that, in a

1E, the net per-period gain V (m(xn)) of a pivotal agent m(xn) from following the

equilibrium path (relative to staying at xn) is of the order xn− xn+1. Thus, if a CLS

exists, for any x and any collection of 1Es sδ, Vδ(m(x))→ 0 as δ → 1. In other words,

the “rents” a pivotal agent gets from the best non-constant continuation evaporate

as agents become more patient (or decisions are made more often). An intuition is

that these rents are the result of agents being able to “lock in” their chosen policy

for one period before losing control—hence they vanish as the periods shorten.

Fourth, it is not hard to find examples in which a CLS fails to exist.17 However,

even when there is no CLS, a version of Proposition 6 holds: under some conditions,

Q1Es can still be guaranteed to be 1Es for high δ, and all sequences of Q1E transition

paths converge to a common limit, but this limit is no longer continuous. The details

for this case are presented in Appendix B.

5 A Model of Political Power

We now discuss a variant of the model that overturns the assumption of free entry

and exit. Consider a polity governed by an endogenous ruling coalition. At each time

t = 1, 2, . . . the ruling coalition chooses a policy xt; the initial policy x0 is exogenous.

The model is the same as the one presented in Section 2, but with two differences.

First, the policy xt now directly determines not just the flow payoffs of all agents

during the period [t, t+ 1), but also the ruling coalition at time t+ 1. In other words,

the mapping x 7→ I(x) is now taken as a primitive of the model. (We assume that

I(x) is still an interval (x− d−x , x+ d+
x ) for each x, with x− d−x , x+ d+

x increasing and

C1 as functions of x.) Second, in this model, all agents are impacted by the policy,

16This is a consequence of Proposition 6 for a sequence (δj)j of the form δj = e−
r
j , but in fact the

proof of the Proposition does not rely on the j’s being integers, only that j →∞.
17For example, if there is a non-reluctant agent, then a CLS cannot exist.
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regardless of whether they are in the ruling coalition. In other words,

Uα ((xt)t, Iα) =
∞∑
t=0

δtuα(xt),

where uα satisfies A1, A2 and A4. This setting is similar to the canonical model of

“elite clubs” (Roberts, 2015), but with a continuous policy space. It can be framed

as a model of enfranchisement (Jack and Lagunoff, 2006), institutional change (Ace-

moglu et al., 2012, 2015), or economic policymaking in a world where political influ-

ence is a function of wealth (Bai and Lagunoff, 2011). Clearly, slippery slope concerns

apply here as well: a ruling coalition may want to expand the franchise (e.g., to lower

unrest) but fear that the new voters will choose to expand it even further.

Our analysis of the main model extends to this case as follows. First, all of our

previous Propositions continue to hold, with analogous proofs. Second, the conclu-

sions of Propositions 3 and 5(iv) now hold for all x ∈ [−1, 1], as opposed to only in

a neighborhood of each stable steady state.18 In particular, an MVE exists; every

MVE satisfies the MVT for all x; and for every MVE sk(x) −−−→
k→∞

m∗(x) for all x.

Although this version of the model represents a setting with different causal rela-

tionships between political power, membership, and flow payoffs, it is closely related

to the model from Section 2: indeed, there is a mechanical equivalence between the

components of both models, and the same tension between current payoffs and future

control is present in both cases.

Other variants, allowing the model to fit new examples, are possible. For instance,

the set of members can affect payoffs directly: vα(x) = uα(x) + wα(I(x)). So long as

vα(x) satisfies A1-4, all of our results apply. A natural example is immigration: if xt

is a country’s immigration policy and I(xt) is its set of citizens, xt does not affect the

payoffs of current citizens directly, but the entry of immigrants does.19

6 Discussion

This Section discusses some implications of our analysis.

18The proofs of Propositions 3 and 5(iv) assume that pivotal agents never stop receiving payoffs
from the club’s policy. In the main model, this requires them not to leave the club; in this variant
it does not matter if they are part of the ruling coalition.

19This example has been studied in the literature, although in an overlapping-generations frame-
work (Ortega, 2005; Suwankiri, Razin and Sadka, 2016).
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Myopic Stability of Steady States

Two central results of our analysis are that steady states are myopically stable (or, in

the language of Roberts (2015), “extrinsic”),20 and convergence to a steady state is

slow when agents are patient. In contrast, in other papers in this literature (Roberts,

2015; Acemoglu et al., 2008, 2012, 2015), intrinsic steady states are possible, and the

time it takes to converge to a steady state is uniformly bounded even as δ → 1.

These papers assume a fixed, finite policy space. Under this assumption, conver-

gence is fast because there is a mechanical lower bound on the size of policy changes;

as a result, intrinsic steady states must exist for δ high enough, if there are reluctant

agents. What we show is that these results are overturned if arbitrarily small policy

changes are allowed. For a fixed δ < 1, our results also hold if the policy space is

finite but fine enough; if we simultaneously take δ to 1 and make the policy space

arbitrarily fine, whether intrinsic steady states exist depends on the order of limits.

The upshot is that, in practice, whether dynamic concerns can indefinitely stall

policy changes depends not just on the agents’ foresight but also on institutional

details that determine whether incremental changes are possible. For example, take

a polity with a limited franchise considering a franchise extension on the basis of

income. Suppose that each voter prefers a larger franchise than the smallest one she

would be in (e.g., for all x, a voter at the xth income percentile wants to enfranchise

everyone above the (x− 5)th percentile). Then, if it is possible to enfranchise the top

y% of the income distribution for any y, full democracy would eventually be reached

through a series of small changes. However, if voting rights can only be extended

based on a few criteria (e.g., only to men who can read, to landowners, to taxpayers,

etc.), indefinite stalling is likely.21

Two important precursors to our analysis, Jack and Lagunoff (2006) and Bai and

Lagunoff (2011), consider dynamic political decision-making with continuous policy

spaces. In particular, Bai and Lagunoff (2011) show that in their model, steady states

of “smooth” equilibria are also stable when the current decision-maker is assumed to

retain power forever (in our setting, this is equivalent to myopic stability). However,

their analysis uses a first-order approach, and so does not extend to other types of

equilibria; moreover, smooth equilibria generically fail to exist, as the second-order

20This is true for all 1Es; for all other MVEs in a neighborhood of each stable steady state; and
globally for all MVEs in the model discussed in Section 5, which is closest to this literature.

21Jack and Lagunoff (2006) make the case that franchise extensions are typically gradual processes.
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conditions are typically violated.22 We build on this result by showing that steady

states must be myopically stable for all equilibria, including discontinuous ones.

Distribution of Steady States

Although f is the primitive of our model describing the distribution of preferences,

our results are best stated in terms of m, the median voter function. Here, we briefly

discuss the relationship between the two objects, focusing on how the shape of f

affects the location of steady states.

In the quadratic case, or more generally whenever I(x) ≡ (x−d, x+d) is symmetric

around x, the distribution of steady states reflects the following intuition: if f is

increasing within I(x) then m(x) > x, and vice versa. Hence, stable steady states

correspond roughly to maxima of the density function.

Remark 2. If I(x) = (x−d, x+d) for all x, and x∗ is a stable (unstable) steady state,

then I(x∗) contains a local maximum (minimum) of f .

In particular, if f is increasing (decreasing) everywhere, there is a unique steady

state close to 1 (−1); if f is symmetric and single-peaked, 0 is the unique steady state.

Thus, the organization always moves to the center if the distribution of preferences

is bell-shaped. Yet, there are three scenarios in which the organization may converge

to a policy more extreme than the bliss points of most voters.

First, even if most voters are near the center, a local maximum near an extreme

may support a stable steady state, especially if d is low.23

Remark 3. If f ′(x∗) = 0 and f ′′(x∗) < 0, then there is d > 0 such that for all d < d,

if I(x) ≡ (x− d, x+ d) for all x, (x∗ − d, x∗ + d) contains a stable steady state.

Second, even if there is a unique steady state, its location will be unstable when f is

close to uniform. For example, consider the densities f1(x) = 1
2
+εx, f2(x) = 1

2
−εx and

f3(x) = 1+ε
2
−ε|x|, for a small ε > 0. These are all close to each other (||fi−fj||∞ ≤ 2ε

∀i, j) but f1 has a unique steady state near −1, f2 has one near 1, and f3 has one at

0. Hence, the long-run policy is potentially discontinuous in f , unlike in models of

voting with a fixed population.

22The existence properties of smooth equilibria are discussed in Appendix D.
23Note that, when there are multiple steady states, which one the organization converges to de-

pends on the initial policy, i.e., there is path-dependence. There is no guarantee that the organization
will converge to a steady state that attracts the most members or maximizes aggregate welfare.
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Third, the tendency towards policies preferred by a majority can be easily over-

turned when the voter sets I(x) are not symmetric around x. In particular, if agents

with extreme preferences are disproportionately more willing to join the organization,

they can capture it despite being a minority, even locally.24

For example, let the policy space be [−1, 1], where −1 is the most moderate policy

and 1 the most extreme, and assume uα(x) = −|α− x|+ (1 + α).25 Then α wants to

be a member whenever x ∈ [−1, 2α + 1], whence I(x) = [−1+x
2
, 1].

Suppose f is as follows: moderates constitute 60% of the population and have bliss

points uniformly distributed in [-1,-0.9]; extremists, the remaining 40%, have bliss

points uniformly distributed in [-0.9,1]. It can then be shown that the unique steady

state is x∗ = 1
3
> 0. At the steady state policy, the set of members I(1

3
) = [−1

3
, 1] is

only 28% of the population, all of them extremists.

7 Conclusion

We conclude with a discussion of some issues that the model leaves out, possible

extensions, and additional results presented in the Appendix.

Our model focuses on the behavior of a single organization, but organizations

often compete—in particular, the usual assumption in Tiebout competition is that

there are many districts. There are two ways of modeling competition. The first is

to assume, as in the idealized Tiebout model, that districts are identical except for

their policies. In such a model, the same dynamics we have studied would arise, but

with the complication that policy changes in one district may lead to responses by

other districts. At the same time, if there are enough districts, every agent would

find a district near her bliss point, so the potential welfare impact of policy changes

in individual districts would vanish as the number of districts grows.26

An alternative approach is to assume that districts are imperfect substitutes. The

example in Section 2 of a city with a competitive advantage over others is a version

of this, and it can be generalized. Suppose that there are k > 1 special cities c∗1,

24This asymmetry is likely in settings where too-extreme policies are perceived as reprehensible or
criminal, but not the reverse (e.g., fringe political parties, violent protest movements, or advocacy
groups whose causes can be perceived as racist or xenophobic).

25The example is degenerate in that ∂2u
∂α∂x is only weakly positive and u is only weakly concave in

x; this is only for simplicity.
26Tiebout (1956) conjectured that agents sorting into compatible districts would lead to an efficient

outcome. This idea has been formalized (Wooders, 1989) as well as criticized (Bewley, 1981).
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. . ., c∗k and k groups of mobile agents, so that agent types are of the form (α, i), for

i ∈ {1, . . . , k}, and group i’s bliss points are distributed according to a density fi.

Assume that u(α,i)(c) = C1c=c∗i − (xt(c) − α)2, that is, agents in group i only value

the city c∗i more than normal cities. (For instance, agents in group i have immobile

relatives in city i.) Our analysis goes through because each special city c∗i competes

only for agents in group i, and does so only with normal cities. If i’s value from

c∗j 6= c∗i is some intermediate C ′ ∈ (0, C), the problem becomes more complicated,

but the relevance of the forces we study does not vanish as k →∞. Thus, our model

can be taken as an analysis of Tiebout competition in the presence of imperfect

substitutability. A similar logic would apply if cities are ex ante identical but have

ex post market power due to moving costs.27

A related extension would allow for the endogenous creation of organizations.

Our analysis suggests that an agent far from a steady state is less likely to create an

organization, or more likely to create a non-democratic one.

The organizations we model are simple: all members have the same voting power,

decisions are made by majority rule, and votes are cast independently. Appendix E.1

discusses how to extend our analysis to allow for supermajority rules or other electoral

rules that make an agent other than the median pivotal.28 However, there is much

unexplored complexity regarding the internal structure of organizations. Agents may

have endogenous voting power (seniority); or they may engage in collective behavior

by voting as a bloc, joining an organization in large numbers in order to change its

policy, or threatening to leave en masse to extract concessions. These behaviors are

not likely in the context of Tiebout competition, but may be so in other applications.

Organizations may also set up various barriers to entry or membership restrictions

(or, in the case of cities, there may be moving costs). In the paper, we consider two

extreme cases: one with completely free entry and exit (Section 2) and one in which

the organization can choose its set of members at will (Section 5). In Appendix

E.2, we present an extension allowing for (exogenous) positive entry and exit costs.

Because in equilibrium agents enter and leave the organization at most once, this

does not change the analysis much. Modeling endogenous entry costs that can be

chosen separately from the organization’s main policy, on the other hand, is much

27Moving costs and idiosyncratic preferences are suggested in Tiebout (1956) and Epple and Romer
(1991), respectively, as forces preventing convergence to a Tiebout equilibrium in practice.

28Even in democracies, higher-income agents may wield more political power (Benabou, 2000;
Jack and Lagunoff, 2006).
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harder, as the state space becomes multidimensional. However, the forces we study

will still be present as long as the organization cannot perfectly control both its

payoff-relevant policy and its membership (if it can, we are back in the world of a

fixed decision-maker).

Our analysis abstracts away from history-dependent strategies by focusing on

Markovian equilibria. In Appendix E.3, we show that Non-Markovian equilibria can

support a large number of outcomes, but that several reasonable refinements select

only Markovian equilibria. In particular, any equilibrium obtainable as a limit of

discrete policy-space equilibria must be Markovian.

Finally, we do not explicitly model the organization’s voting process. One way

to interpret our results is that they will hold whenever the organization’s collective

decision-making process leads to Condorcet-winning policies being chosen. In Ap-

pendix E.4, we discuss possible microfoundations of this modeling assumption. In

particular, the MVEs we study are Markov Perfect Equilibria of a game in which, in

each round of voting, there are two short-lived, office-motivated candidates engaging

in Downsian competition. However, not all political processes are so well-behaved.

For instance, if the organization has more than two candidates running for office, or

it is run by a deliberative decision-making process, then the Condorcet winner may

not win.29 In addition, leaders typically have some agency in practice. If they are

long-lived and have heterogeneous appeal, or are policy-motivated, they may cham-

pion certain policies in an attempt to change the policy path, possibly permanently.

Moreover, a politician may strategically push for policies that will attract a set of

members predisposed to like her.30

Appendices B, C and D contain technical results. Appendix B contains the proofs

of Propositions 6 and 7 and characterizes the case in which no CLS exists. Appendix

C shows that the limit solution described in Appendix B exists for all m satisfying

a genericity condition. Appendix D discusses the existence properties of equilibria

other than 1Es (in particular, smooth equilibria and k-equilibria, a generalization of

1Es); calculates explicit equilibria for the case of linear m and quadratic utility; and

gives an example of an MVE that is non-monotonic outside of I(x∗).

29For example, Bouton and Gratton (2015) shows that Condorcet winners may lose in majority
runoff elections with three candidates.

30Glaeser and Shleifer (2005) discusses the case of Mayor Curley of Boston, who used wasteful
policies in an effort drive out rich citizens of English descent, as he was most popular among the
poor Irish population.
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A Proofs

Lemma 2. Let S = (x0, x1, . . .), T = (y0, y1, . . .) be two policy paths, and let I(S) =

∪∞n=0I(xn), I(T ) = ∪∞n=0I(yn). Suppose that supxn < inf yn; I(S), I(T ) are intervals;

and I(S) ∩ I(T ) 6= ∅. Then there is α0 such that agents in [−1, α0) strictly prefer S

to T , and agents in (α0, 1] strictly prefer T to S.

Proof. Let x = inf xn, x = supxn, y = inf yn, y = sup yn. By assumption, x ≤ x <

y ≤ y. Note that all agents α < x strictly prefer S to T by A4 and A6; likewise, all

α > y strictly prefer T to S.

Let W (α) = Uα(T )− Uα(S). Note that W is continuous and W (x) < 0 < W (y).

Hence there is some α0 ∈ [x, y] for which W (α0) = 0. For any α ∈ [x, y], let

I−S (α) =
∑∞

n=0 δ
n
1xn≤α,uα(xn)>0, I+

S (α) =
∑∞

n=0 δ
n
1xn>α,uα(xn)>0. Define I−T (α), I+

T (α)

analogously.

If α ∈ [x, y], then I−S (α) ≥ I−T (α) = 0 = I+
S (α) ≤ I+

T (α), and I−S (α) + I+
T (α) > 0

by the assumption that I(S) ∩ I(T ) 6= ∅. Then W ′(α) > 0 by A5.

If α ∈ [y, y], then I+
S (α) = 0, and one of the following must be true. If I−S (α) ≤

I−T (α), then W (α) > 0 by A4, and moreover W (α′) > 0 for all α′ ∈ [α, y]. If

I−S (α) > I−T (α), then W ′(α) > 0 by A2 and A5. Similarly, for each α ∈ [x, x], either

W ′(α) > 0 or W (α′) < 0 for all α′ ∈ [x, α].

In general, then, we can find thresholds z0, z1 such that x ≤ z0 ≤ x < y ≤ z1 ≤ y;

W ′(α) > 0 for all α ∈ [z0, z1]; W (α) < 0 for all α ∈ [x, z0); and W (α) > 0 for all

α ∈ (z1, y]. Hence W can vanish at most at one point, so α0 is unique.

Lemma 3. In any MVE s, for any y, I(y) ∩ I(s(y)) has positive measure. Hence

I(S(y)) is an interval for all y.

Proof. Suppose WLOG y < s(y). We argue that y + d+
y > s(y)− d−s(y). Suppose this

is false; then all voters in I(y) get utility 0 from policy s(y). If E = {α ∈ I(y) :

Uα(S(s(y))) > 0} is a strict majority of I(y), this leads to a contradiction, as all of

E would strictly prefer S(s2(y)) to S(s(y)). Let D = {α ∈ I(y) : Uα(S(s(y))) ≥
Uα(S(y))} ⊆ E. Since S(s(y)) is a Condorcet winner in I(y), D is a majority in

I(y). If I(y) ⊆ D we are done. If not, ∃α0 ∈ I(y) − D. By the continuity of

Uα(S(s(y))), ∃α1 such that 0 < Uα1(S(s(y))) < Uα1(S(y)), and this inequality holds

in some neighborhood (α1 − ε, α1 + ε). Hence E −D has positive measure and E is

a strict majority of I(y).
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Corollary 2. In any MVE, let S = S(y) for some y < x and T = (x, x, . . .), with

sup(S) ≤ x. Then there is α0 ≤ x such that agents in [−1, α0) strictly prefer S to T ,

and agents in (α0, 1] strictly prefer T to S.

Proof. If I(S)∩ I(x) 6= ∅, this follows directly from Lemmas 2 and 3. If not, then all

α ≥ x− d−x strictly prefer T to S and all α ≤ sup I(S) strictly prefer S to T . Let α′0

be such that uα′0(y) = uα′0(x) < 0. If α′0 ∈ (sup I(S), x − d−x ) then take α0 = α′0. If

α′0 ≤ sup I(S) then take α0 = I(S). If α′0 ≥ x− d−x take α0 = x− d−x .

Proof of Proposition 1. Suppose S(y) is not monotonic. For this proof, denote sk =

sk(y), Sk = S(sk), Ik = I(sk), y = inf(S(y)) and y = sup(S(y)). For brevity, we will

say α prefers a policy x to a path S if she prefers (x, x, . . .) to S. There are two cases:

Case 1: S(y) attains y or y, i.e., ∃k ∈ N such that sk = y or sk = y. Suppose

WLOG the former. Then there is a k ∈ N such that sk−1 < y, sk = y and sk+1 < y.31

Consider the decision made by voters in Ik−1 and in Ik. Since Sk is the Condorcet

winner in Ik−1, a majority of Ik−1 prefer it to Sk+1. At the same time, Sk+1 is

Condorcet-winning in Ik, so a majority of Ik prefer Sk+1 to Sk. Let A = (sk−1 −
d−k−1, sk − d−k ), B = (sk − d−k , sk−1 + d+

k−1), C = (sk−1 + d+
k−1, sk + d−k ). Note that α

prefers Sk to Sk+1 iff he prefers sk to Sk+1. Apply Corollary 2. If α0 ∈ C, all voters

in A∪B strictly prefer Sk+1 to Sk, a contradiction. If α0 ∈ B, all voters in A strictly

prefer Sk+1 to Sk and all voters in C strictly prefer Sk to Sk+1, a contradiction.

Case 2: S(y) never attains its infimum nor its supremum. Then there must be a

subsequence (ski)i such that ski −→
i→∞

y. Construct a sub-subsequence skij such that

skij −→j→∞ y and skij−1 −→
j→∞

s−1
∗ for some limit s−1

∗ ≤ y. (We can do this because

all the sk are in [−1, 1], which is compact.) Iterating this, construct a nested list of

subsequences ((skim)i)m such that kim is increasing in i for each m; Km = {kim : i ≥
0} ⊇ Km′ for m < m′; and, for each m, skim+r −→

i→∞
sr∗ for any r ∈ {−m, . . . ,m}, where

s0
∗ = y. Let gi = kii. Then (sgi)i is a subsequence of (sk)k such that sgi+r −→

i→∞
sr∗ for

any r ∈ Z. We now consider four sub-cases.

Case 2.1: Suppose sr∗ < y for some r < 0 and for some r′ > 0, and let r < 0 < r be

the numbers closest to 0 satisfying these conditions. Consider the decisions made by

Igi+r and Igi+r−1, for high i. In the limit, they imply that a majority in I(sr∗) prefers y

to S̃(sr∗), while a majority in I(y) prefers S̃(sr∗) to y (denoting S̃(sr∗) = (sr∗, s
r+1
∗ , . . .)).

As in Case 1, this contradicts Corollary 2.

31The same argument would apply if sk(y) = . . . = sk+m(y) > sk−1(y), sk+m+1(y).
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Case 2.2: Suppose sr∗ < y for some r < 0 but never for r > 0. Take r maximal, so

sr∗ < y and sr∗ = y ∀r > r. Fix 0 < ν < y−sr∗. For each i, let r′(i) be such that sgi+r′(i)

is the first element of the sequence (sk)k after sgi+r that is weakly smaller than sr∗+ν.

Construct a subsequence (sgij )j such that sgij+r′(ij)+l → sl∗∗ for l ≥ −1 (in particular

s−1
∗∗ ≥ sr∗ + ν ≥ s0

∗∗). Now compare the decisions made by I(sgi+r) and I(sgi+r′(i)−1).

In the limit, they imply that a weak majority in I(sr∗) prefers y to S̃(s0
∗∗), while a weak

majority in I(s−1
∗∗ ) prefers the opposite (here S̃(s0

∗∗) = (s0
∗∗, s

1
∗∗, . . .)). This contradicts

Corollary 2.

Case 2.3: Suppose sr∗ < y for some r > 0 but never for r < 0. Take r minimal, so

sr∗ < y and sr∗ = y ∀r < r. Fix 0 < ν < y − sr∗. Let r′ν(i) be such that sgi+r′ν(i) is the

last element before sgi that is weakly smaller than y − ν. Clearly r′ν(i) −→
i→∞
−∞.

Consider the choice made by I(sgi+r−1). In the limit, a majority in I(y) prefers

(sr∗, s
r+1
∗ , . . .) over y. Apply Corollary 2. Clearly α0 < y, so m(y) ≤ α0 < y. As

m is strictly increasing, mk(y) is strictly decreasing in k and converges to a limit m̃;

moreover, m(y) < y for all y ∈ (m̃, y]. Call gi+r
′
ν(i) = hiν and let sν∗ = lim infi→∞ shiν .

Let s∗∗ = lim infν→0 s
ν
∗. If s∗∗ < y, take a sequence of ν, hiν such that shiν → s∗∗. By

construction shiν+l ≥ y−ν for l = 1, . . . , L for L arbitrarily large as ν → 0, hiν →∞.

Then, in the limit, y is a Condorcet winner in I(s∗∗); in particular, a majority prefers

y to (sr∗, s
r+1
∗ , . . .), which contradicts Corollary 2.

If s∗∗ = y we must work away from the limit. Take ε > 0 such that (y−d−y +ε, y−
ε) ⊆ I(y − υ) is a strict majority of I(y − υ) for all 0 < υ ≤ ε.32 Take a fixed ν ′ < ε;

a ν < ν ′ such that sν∗ ≥ y − ν ′; and a subsequence sfi of shiν such that sfi → sν∗. Let

Mi be the largest integer such that sfi+l ∈ (y − ν, y) for l = 1, . . . ,Mi and Ki the

set of l ∈ 1, . . . ,Mi such that sfi+l ∈ (y − ν
2
, y). Let ki = min(Ki). By construction,

Mi, |Ki| → ∞. Then, for α ∈ (y − d−y + ε, y − ε),

1

1− δuα(sfi)− Uα(S(sfi+1)) =
∑
t∈Ki

δt−1 (uα(sfi)− uα(sfi+t)) +

+
∑

Mi≥t/∈Ki

δt−1 (uα(sfi)− uα(sfi+t)) +
∑
t>Mi

δt−1
(
uα(sfi)− 1α∈I(sfi+t)uα(sfi+t)

)
≥ δki−1 (uα(sfi)− uα(sfi+ki)) + 0− δMi

1− δC = δki−1

(
uα(sfi)− uα(sfi+ki)−

δ|Ki|

1− δC
)

where C = maxα uα(α). Note that uα(sfi) − uα(sfi+ki) ≥ usfi (sfi) − usfi (sfi+ki) +

32ε exists because m(y) < y and y − d−y , y + d+y are continuous in y.

27



M ′(sfi − α)(sfi+ki − sfi) ≥ M ′(sfi − y + ε)ν
2
, which converges to M ′(sν∗ − y + ε)ν

2
≥

M ′ ν
2
(ε − ν ′) > 0 as i → ∞. On the other hand, δ|Ki| → 0 as i → ∞. Hence all

α ∈ (y− d−y + ε, y− ε) prefer sfi to S(sfi+1) for high i, so S(sfi+1) is not a Condorcet

winner in I(sfi), a contradiction.

Case 2.4: sr∗ = y for all r. In other words, the sequence spends arbitrarily long

times near y and y (if not true for both boundaries, one of the former cases applies).

We first prove the following claim: m(y) = y for all y ∈ [y, y].

Take any y0 ∈ (y, y). Take a sequence (hi)i such that, for each i, shi is the last

element of the sequence (sk)k before sgi such that sk ≤ y0. Intuitively, shi is the last

element of the sequence below y0 before the sequence goes near y for a long time.

Take a diagonal subsequence (ski) of (shi) such that ski+l has a limit sl∗∗ for all i.

Clearly s0
∗∗ ≤ y0 and sl∗∗ ≥ y0 for all l > 0.

Consider the choice made by I(ski). If s0
∗∗ < y0, in the limit, a majority in I(s0

∗∗)

prefers (s1
∗∗, s

2
∗∗, . . .) over s0

∗∗. Apply Corollary 2. Clearly m(s0
∗∗) ≥ α0 > s0

∗∗, so

um(s0∗∗)(s
0
∗∗) ≤ um(s0∗∗)(y0). If s0

∗∗ = y0, then m(y0) < y0 leads to a contradiction by

an analogous argument as in Case 2.3, so we must have m(y0) ≥ y0. Conversely,

considering sequences going near y for arbitrarily long, we obtain that either m(y0) ≤
y0 or there is s̃0

∗∗ > y0 such that m(s̃0
∗∗) < s̃0

∗∗ and um(s̃0∗∗)(s̃
0
∗∗) ≤ um(s̃0∗∗)(y0).

For each y ∈ (y, y) such that y 6= m(y), define ŷ 6= y to be such that um(y)(y) =

um(y)(ŷ). Take y0 such that |y0 − ŷ0| is maximal. WLOG m(y0) < y0, so there is

s0
∗∗ < y0 such that m(s0

∗∗) > s0
∗∗ and um(s0∗∗)(s

0
∗∗) ≤ um(s0∗∗)(y0). Since m(y0) > m(s0

∗∗),

um(y0)(s
0
∗∗) < um(y0)(y0), so ŷ0 > s0

∗∗; but ŝ0
∗∗ ≥ y0. Hence |s0

∗∗ − ŝ0
∗∗| > |ŷ0 − y0|, a

contradiction.

For the case where m(y) = y for all y ∈ [y, y], we use the following Lemma.

Lemma 4. Let S = (y, y, . . .), and let T = (xn)n 6= S. If x and x′ both prefer T to

S, and x < y < x′, then x /∈ I(x′) or x′ /∈ I(x).

Proof. Suppose for that x ∈ I(x′) and x′ ∈ I(x). It is enough to check the case where

T is contained in [x, x′]: if not, define a path (x̃n)n by x̃n = min(max(xn, x), x′). Then

(x̃n)n is contained in [x, x′] and is weakly better for both x and x′ than T .

By assumption, both x and x′ derive non-negative utility from all elements of T .

Let x = (1 − δ)
∑

n δ
nxn, and T ′′ = (x, x, . . .). If T ′′ 6= T , both x and x′ strictly

prefer T ′′ to T by Jensen’s inequality and A4. Hence they both strictly prefer x to y,

a contradiction. If T ′′ = T , x 6= y and both agents prefer x to y, a contradiction.
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Take ε > 0, ν > 0 small and y0 = y + ε. Construct ski as before. It follows

from previous arguments that s0
∗∗ = y0. For all i, a majority in I(ski) must prefer

S(ski+1) over ski . Since ski strictly prefers ski over S(ski+1) and ski = m(ski), this

can only happen if there are voters both above and below ski who prefer S(ski+1).

Let y′i < ski < y′′i be the closest voters to ski who weakly prefer S(ski+1), and denote

y′i−(ski−d−ski ) = η′i, y
′′
i −ski = η′′i . Note that η′i, η

′′
i −→
i→∞

0.33 In addition, y′′i −d−y′′i > y′i;

otherwise we obtain a contradiction as in Lemma 4. Let ỹi be such that ỹi− d−ỹi = y′i.

Given the path T i = S(ski+1) construct T ′i as follows. If T ij ≥ y′′i +ν, T ′ij = y′′i +ν.

If y′′i + ν > T ij ≥ ỹi, T
′i
j = y′′i . If ỹi > T ij ≥ ski , T

′i
j = zi =

∑
ỹi>T

i
j
≥ski

δjT ij∑
ỹi>T

i
j
≥ski

δj
. If

ski > T ij , T
′i
j = vi =

∑
ski

>Ti
j
δjT ij∑

ski
>Ti

j
δj

. Then both y′i and y′′i weakly prefer T ′i over T i.

Moreover, T ′i is a linear combination of at most four policies; by an abuse of notation,

T ′i = ωi1[y′′i ] + ωi2[y′′i + ν] + ωi3[zi] + ωi4[vi] with
∑

j ω
i
j = 1. In addition, since S(ski+1)

spends a long time near y (hence above y′′i +ν) before going back under ski ,
ωi4
ωi2
−→
i→∞

0.34

Finally, take 0 < ωi5 ≤ ωi4 such that ωi3zi + ωi5vi = (ωi3 + ωi5)ski ,
35 and construct

T ′′′i = ωi1[y′′i ]+ωi2[y′′i +ν]+(ωi3+ωi5)[ski ]+(ωi4−ωi5)[vi], T
′′i = wi1[y′′i ]+wi2[y′′i +ν]+wi3[vi]

where wi1 =
ωi1

ωi1+ωi2+ωi4−ωi5
, wi2 =

ωi2
ωi1+ωi2+ωi4−ωi5

, wi3 =
ωi4−ωi5

ωi1+ωi2+ωi4−ωi5
and

wi3
wi2
−→
i→∞

0. Then

both y′i and y′′i weakly prefer T ′′i over T i and hence over ski . Then, for some C, c > 0,

Cwi3 ≥ wi3uy′i(vi) ≥ uy′i(ski) = uy′i(ski)− uy′i−η′i(ski) = η′i
∂uα̃(ski)

∂α
≥ cη′i

uy′′i (ski) ≤ wi1uy′′i (y′′i ) + wi2uy′′i (y′′i + ν) + wi3uy′′i (vi) ≤ (wi1 + wi2)uy′′i

(
y′′i +

wi2ν

wi1 + wi2

)
+ wi3uy′′i (ski)

uy′′i (y′′i − η′′i ) = uy′′i (ski) ≤ uy′′i

(
y′′i +

wi2ν

wi1 + wi2

)
≤ uy′′i

(
y′′i + wi2ν

)
As A2 and A4 imply uα(α)− uα(α− x) ∈

[
M ′

2
x2, M

2
x2
]
, this means

M

2
(η′′i )2 ≥ M ′

2
(wi2ν)2 =⇒ η′′i

η′i
≥
√
M ′

M

c

C

wi2
wi3
ν

Since (y′i, y
′′
i ) cannot be a strict majority in I(ski), we must have F (y′′i ) − F (ski) ≤

33η′i → 0 by a similar argument to Case 2.3. Then, if η′′i did not converge to zero, (y′i, y
′′
i ) would

be a strict majority in I(ski) for large i, a contradiction.
34For these arguments to work, we take ν, ε small enough that y0 + ν < y and uy0(y) > 0.
35If this is not possible then y′i could not have preferred T ′i over ski , a contradiction.
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F (y′i)−F (ski−d−ski ) for all i. But this is impossible as f(x)
f(x′)

is bounded and
η′′i
η′i
−→
i→∞
∞,

a contradiction.

Proof of Proposition 2. Suppose m(y) = y and s(y) 6= y; WLOG s(y) < y. A ma-

jority in I(y) must prefer S(s(y)) to S(y), i.e., they must prefer S(s(y)) to y. By

Proposition 1, sk(y) ≤ s(y) for all k. But then, for small enough ε > 0, all agents in

(y − ε, y + d+
y ) strictly prefer y to S(s(y)), a contradiction.

If m(y) 6= y, suppose WLOG that m(y) < y. If s(y) > y then sk(y) ≥ s(y) > y

for all k, so all voters in (y − d−y , y) (a strict majority in I(y)) strictly prefer y to

S(s(y)), a contradiction. Hence s(y) ≤ y. On the other hand, suppose s(y) < m∗(y).

Note that m∗(y) < m(y); m(m∗(y)) = m∗(y); sk(y) ≤ s(y) for all k; and choosing

m∗(y) leads to the policy path (m∗(y),m∗(y), . . .) by the previous case. Then, for

small enough ε > 0, all voters in (m(y) − ε, y + d+
y ) prefer S(m∗(y)) over S(s(y)),

a contradiction. Hence s(y) ≥ m∗(y). Next, suppose s(y) = m∗(y) and consider

T = (m(y), s(m(y)), . . .). Since T is contained in [m∗(y),m(y)] and T1 = m(y) >

m∗(y), all voters in (m(y)− ε, y + d+
y ) for small ε > 0 strictly prefer T over S(s(y)),

a contradiction. Hence s(y) > m∗(y).

We now show that, if the MVT holds on [m∗(y), y], then s(y) < y. Suppose that

s(y) = y. There must be ε0 such that s(y − ε) < y − ε for all 0 < ε < ε0 (otherwise,

m(y) would prefer the constant path (y−ε, y−ε, . . .) to (y, y, . . .) for ε small enough).

Let s−(y) = lim infε→0 s(y − ε) ∈ [m∗(y), y]. There are two cases: s−(y) = y and

s−(y) < y. If s−(y) = y, then sk(x)→ y as x→ y for all k. For all x ∈ (y−ε0, y), m(x)

must prefer S(s(x)) to x. That is, denoting W (x) = (1− δ)Um(x)(S(s(x)))−um(x)(x),

we must have W (x) ≥ 0. Equivalently

(1− δ)
kx∑
t=0

δtum(x)

(
st+1(x)

)
− um(x)(x) ≥ 0,

where kx = max{k : m(x) ∈ I(sk(x))} − 1. (Note that kx −→
x→y
∞.) By the envelope

theorem,

W ′(x) = (1− δ) ∂
∂α

Um(x)(S(s(x)))m′(x)− d

dx
um(x)(x) =

=
kx∑
t=0

(1− δ)δt
(
∂

∂α
um(x)

(
st+1(x)

)
− ∂u

∂α

)
m′(x)− (1− δkx+1)

∂u

∂x
− δkx+1du

dx
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≥
kx∑
t=0

δt
(
−M(x− st+1(x))

)
m′(x)− (1− δkx+1)

∂u

∂x
− δkx+1du

dx

−→
x→y
− ∂

∂x
um(y)(y) > 0,

where u stands for um(x)(x) unless otherwise noted. Thus W (x) ≥ 0 and W ′(x) > 0

for all x ∈ (y − ε1, y), whence W (y) > 0, which contradicts s(y) = y.

If s−(y) < y, let (yn)n be a sequence such that yn < y ∀n, yn → y and, for all t,

st(yn) converges to a limit st as n→∞ (in particular s1 = s−(y)). By construction,

m(y) must prefer y to S(s(yn)) for all n. We now aim to show that

Um(y)(S(s(yn)))− 1
1−δum(y)(y)

y − yn
−−−→
n→∞

0.

m(yn) prefers S(s(yn)) to y for all n. By continuity, m(y) is indifferent between y and

(st)t. Moreover, m(yn) prefers S(s(yn)) to all other S(s(yn′)), hence to (st)t. Thus

0 ≥ Um(y)(S(s(yn)))− 1

1− δum(y)(y) = Um(y)(S(s(yn)))− Um(y)((st)t) ≥

≥ Um(y)(S(s(yn)))− Um(y)((st)t) + Um(yn)((st)t)− Um(yn)(S(s(yn))) =
∞∑
t=0

δtAtn,

where, denoting vα(x) = max(uα(x), 0),

Atn = vm(y)(s
t+1(yn))− vm(y)(st+1) + vm(yn)(st+1)− vm(yn)(s

t+1(yn)).

Let Btn = Atn
y−yn . Then it is sufficient to show that Btn is uniformly bounded (that is,

∃B such that |Btn| ≤ B for all t, n) and that, for all t, lim infn→∞Btn ≥ 0.

We first prove the boundedness. Using that |max(a, 0)−max(b, 0)| ≤ |a− b|,

Atn ≤ |Atn| ≤ |um(y)(s
t+1(yn))− um(yn)(s

t+1(yn))|+ |um(yn)(st+1)− um(y)(st+1)| ≤

≤ 2m′max
α,x

[
∂uα(x)

∂α

]
(y − yn),

where m′ = m′(x). Next, we prove that lim infn→∞Btn ≥ 0. There are four cases.

First, if um(y)(st+1) > 0, then there is n0 such that for all n ≥ n0 um(y)(s
t+1(yn)),

um(yn)(st+1), um(yn)(s
t+1(yn)) > 0. For all such n, by A2, there is M̃tn ∈ [M ′,M ]
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such that Atn = M̃tn (st+1(yn)− st+1) (m(y)−m(yn)), so |Btn| −−−→
n→∞

0. Second, if

um(y)(st+1) < 0, then for all large enough n Atn = 0. Third, if um(y)(st+1) = 0 and

st+1(yn) ≥ st+1, all the terms are positive and we use the same argument as in case

1. Fourth, if um(y)(st+1) = 0 and st+1(yn) < st+1, then um(yn)(st+1) > um(yn)(s
t+1(yn))

and vm(y)(st+1) = vm(y)(s
t+1(yn)) = 0, so Bnt ≥ 0.

Consider now the possibility of m(y) choosing S(yn) instead. We can see that

(1− δ)Um(y)(S(yn))− um(y)(y) =

= (1− δ)
(
um(y)(yn)− um(y)(y)

)
+ δ

(
(1− δ)Um(y)(S(s(yn)))− um(y)(y)

)
= (1− δ)(yn − y)

∂um(y)(ỹ)

∂x
+ o(y − yn)

for some ỹ ∈ [yn, y]. Since
∂um(y)(ỹ)

∂x
−−−→
n→∞

∂um(y)(y)

∂x
< 0, the above expression is

positive for high n, so s(y) = y is not optimal for m(y), a contradiction.

Finally, we show that sk(y) converges to m∗(y). Since sk(y) ∈ [m∗(y), y] for all y

and the sequence (sk(y))k is decreasing, it has a limit s∗ ∈ [m∗(y), y). Suppose s∗ >

m∗(y). Then m(s∗) < s∗, so there is k0 such that m(sk(y)) < s∗ for all k ≥ k0. For

such k, m(sk(y)) would strictly prefer S(sk+2(y)) to S(sk+1(y)), a contradiction.

Proof of Corollary 1. Let x∗i < x∗i+1 be consecutive fixed points of m. Since m is

continuous, either m(y) > y ∀y ∈ (x∗i , x
∗
i+1) or m(y) < y for all such y. The first

case implies m′(x∗i ) ≥ 1 and m′(x∗i+1) ≤ 1, and vice versa; since m′(x∗j) 6= 1, these

inequalities are strict, which implies that the intervals must alternate.

A fixed point of m is stable if m′(x∗) < 1 and unstable if m′(x∗) > 1 (see e.g.

Elaydi (2005), Chapter 1.5). Since m(−1) > −1 and m(1) < 1, x∗1 and x∗n are both

stable, and stable and unstable fixed points alternate in between.

Proof of Proposition 3. We first prove the monotonicity. Fix ε > 0 small. Let x <

y ∈ [x∗, x∗ + ε], where m(x∗) = x∗, m(x∗∗) = x∗∗, m(y) < y for all y ∈ (x∗, x∗∗)

and ε < x∗∗ − x∗. Call sk(x) = xk, s
k(y) = yk and suppose x1 > y1. Then S(x1) is

preferred to S(y1) by a majority in I(x), and the opposite happens in I(y). Since all

agents in I(y) − I(x) = (x + d+
x , y + d+

y ] prefer S(x1) due to A6, there must also be

z0 ∈ I(x)− I(y) = [x− d−x , y − d−y ) that prefers S(x1) (in fact there must be enough

of them, but we only need one).

Let l be such that xi > yi for i = 1, 2, . . . , l but not for i = l+1. If xl+1 = yl+1 (and

hence S(xl+1) = S(yl+1)) we have a contradiction, as any z0 ∈ I(x)−I(y) would prefer
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S(y1) to S(x1) pointwise. By a similar argument, there must be zl ∈ I(yl)−I(xl) that

prefers S(yl+1) to S(xl+1). If xi < yi for all i ≥ l + 1 this also yields a contradiction,

as any such zl would prefer S(xl+1) over S(yl+1) pointwise. More generally, if the

ordering between xl and yl only changes a finite number of times, we can obtain a

contradiction by looking at the last change. The only case left to consider is if there

are arbitrarily high i’s and j’s for which xi > yi and xj < yj. If so, note that

0 ≤ Uz0(S(x1))− Uz0(S(y1)) =
l−1∑
t=0

δt (uz0(x1+t)− uz0(y1+t)) +
∑
t≥l

δt (uz0(x1+t)− uz0(y1+t))

−∂uz0(x)

∂x
|x∗

l−1∑
t=0

δt (x1+t − y1+t) ≤
l−1∑
t=0

δt (uz0(y1+t)− uz0(x1+t)) ≤
∑
t≥l

δt (uz0(x1+t)− uz0(y1+t))

(Note that z0 gets positive utility from all policies in S(x1) and S(y1).) Then

0 ≤ Uzl(S(yl+1))− Uzl(S(xl+1)) =
∑
t≥l

δt−l (uzl(y1+t)− uzl(x1+t))

−∂uz0(x)

∂x
|x∗

l−1∑
t=0

δt (x1+t − y1+t) ≤
∑
t≥l

δt (uz0(x1+t)− uzl(x1+t)− uz0(y1+t) + uzl(y1+t))

−∂uz0(x)

∂x
|x∗

l−1∑
t=0

δt (x1+t − y1+t) ≤
∑
t≥l

δtM(z0 − zl)|x1+t − y1+t|

−∂uz0(x)

∂x
|x∗ max

0≤t≤l−1
{|x1+t − y1+t|} ≤

1

1− δM(z0 − zl) sup
t≥l
{|x1+t − y1+t|}(

−∂uz0(x)

∂x
|x∗
)

1− δ
M(z0 − zl)

max
0≤t≤l−1

{|x1+t − y1+t|} ≤ sup
t≥l
{|x1+t − y1+t|}

Since z0 − zl ≤ ε− d−x∗+ε + d−x∗ −−→
ε→0

0, by taking ε small enough, we can guarantee

D max
0≤t≤l−1

{|x1+t − y1+t|} ≤ sup
t≥l
{|x1+t − y1+t|}

for a fixed D > 2 (we can take D arbitrarily large). Take t0 = arg max0≤t≤l−1{|x1+t−
y1+t|} and t1 the smallest t ≥ l for which |x1+t1 − y1+t1| ≥ 2|x1+t0 − y1+t0|. We can

apply the same argument to obtain t2 such that |x1+t2 − y1+t2| ≥ 2|x1+t1 − y1+t1 |, and

so on for t3, etc. Then, for large enough j, |x1+tj − y1+tj | > x∗∗− x∗, a contradiction.

This argument proves (i) for an interval [x∗, x∗ + ε). Now let
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x̂ = inf{x̃ : s is not monotonic on [x∗, x̃]} ≥ x∗ + ε.

Suppose WLOG that x∗∗ > m−1(x∗+d+
x∗). We will now show that x̂ ≥ m−1(x∗+d+

x∗) >

x∗ + d+
x∗ . Suppose x̂ < m−1(x∗ + d+

x∗).

By construction, for any ε > 0, there must be pairs xε, yε such that xε < yε,

s(xε) > s(yε) and xε, yε ∈ (x̂ − ε, x̂ + ε). There are two cases. If there are arbi-

trarily small ε for which sk(xε), sk(yε) ≥ x̂ for all k, and moreover limk→∞ s
k(xε) =

limk→∞ s
k(yε) ≥ x̂, then we obtain a contradiction by repeating our previous ar-

gument. Else we are able to pick xε and yε so that, in the addition to the above

conditions, sk(xε) > sk(yε) for all k ≥ 1.36 Label sk(xε) = xk, s
k(yε) = yk.

A majority in I(y0) must prefer S(y1) to S(x1), and a majority in I(x0) must prefer

S(x1) to S(y1). Then some z0 ∈ I(x0)− I(y0) prefers S(x1) to S(y1). A2 implies that

all z ∈ [z0, x
∗ + d+

x∗ ] strictly prefer S(x1) to S(y1). For ε small enough, m(I(y0)) <

x∗ + d+
x∗ , so a strict majority in I(y0) prefers S(x1) to S(y1), a contradiction.

Next, we prove that the MVT must hold. Let y ∈ I(x∗) ∩ [x∗, x∗∗) and suppose

m(y) strictly prefers S(y′) to S(s(y)), where y′ < s(y). Since s is increasing in

I(x∗) ∩ [x∗, x∗∗), sk(y′) ≤ sk(s(y)) for all k, so by A2 all voters x < m(y) prefer

S(y′) to S(s(y)). Some voters x > m(y) close to m(y) also prefer S(y′) by continuity.

Hence S(s(y)) is not a Condorcet winner in I(y), a contradiction. Next, suppose

s(y) < y′ ≤ y. Then all voters in [m(y), x∗+ d+
x∗ ] prefer S(y′) by A2, and some voters

x < m(y) prefer S(y′) by continuity. On the other hand, voters x ∈ (x∗+ d+
x∗ , y+ d+

y ]

prefer S(y′) to S(s(y)) because x ≥ y and sk(y′) ≥ sk(s(y)) for all k. Hence s(y) is

not a Condorcet winner in I(y), a contradiction.

For the existence, it is enough to prove existence of MVE for the model in Section

5.37 For this, we refine an incomplete argument given in Acemoglu et al. (2015)

(Theorem B3). Briefly, for any finite policy space X ⊆ [−1, 1], an MVE can be found

by backward induction, and its monotonicity can be proved as above. Take a sequence

of finite spaces X1 ⊆ X2 ⊆ . . . such that ∪i∈NXi is dense in [−1, 1], and take an MVE

36If eventually sk(xε) < x̂, or sk(xε) and sk(yε) converge to different limits, the inequality sk(xε) ≶
sk(yε) can only flip finitely many times as k grows, and we can look at the last time it flips.

37Any such MVE is also an MVE of the main model within I(x∗)∩[x∗, x∗∗). The reason is that any
such MVE is monotonic and satisfies the MVT everywhere, i.e., ∀y, y′, m(y) prefers S(s(y)) to S(y′).
m(y) then also prefers S(s(y)) to all S(y′) in the main model if y ∈ I(x∗). By the monotonicity, and
combining A2 and A6, the sets of voters in I(y) preferring S(s(y)) to S(y′) or vice versa are both
intervals, so a majority prefers S(s(y)) iff m(y) does.
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s̃i : Xi → Xi for each. Let si be a monotonic extension of s̃i to [−1, 1]. By a diagonal

argument, abusing notation, find a subsequence (sj)j such that (sj(x))j converges at

every element of ∪i∈NXi. (sj(x))j must in fact converge at all but countably many

points, so we can find a subsequence that converges for all x. Denote the limit by s̃.

This is the construction from Acemoglu et al. (2015). But s̃ need not be an MVE,

as there is no guarantee that S̃(s̃(y)) = limj→∞ Sj(sj(y)) if s̃ is not continuous.

Say S = (xt)t is an optimal path for y if there is a sequence yj → y such that

Sj(sj(yj)) → S (i.e., stj(yj) −−−→
j→∞

xt ∀t). Denote by S(y) the set of y’s optimal

paths. Then it can be shown that the elements of S(y) are ordered for each y;

if S ∈ S(y) and S ′ ∈ S(y′), with y > y′, then S ≥ S ′; and, if Sj ∈ S(yj) ∀j,
yj → y, and Sj → S, then S ∈ S(y). In addition, for any (x0, x1, . . .) ∈ S(y),

(x1, . . .) ∈ S(x0). Moreover, (x1, . . .) must be the maximal element of S(x0), that

is, it must be limyj↘x0 min(S(yj)). Indeed, m(x0) is indifferent between all elements

of S(x0); by A2, m(y) strictly prefers the maximal one. Then, if (x1, . . .) is not the

maximal element, m(y) would deviate to x0 + ε for ε > 0.

Define then s by s(y) = infy′>y s̃(y
′). We can show by induction on t that

S(s(y)) = max(S(y)), and from there that s constitutes an MVE.

Proof of Proposition 4. Let t0 = min{t : st(x) ≤ y}. By Proposition 1, st(x) ≤
st0(x) ≤ y for all t ≥ t0. A majority of I(x) must prefer S(s(x)) to S(x). Then, by

Corollary 2, m(x) must have this preference:

um(x)(x)

1− δ ≤ Um(x)(S(s(x))) ≤ 1− δt0
1− δ um(x)(m(x)) +

δt0

1− δ max(um(x)(y), 0)

δt0 ≤ um(x)(m(x))− um(x)(x)

um(x)(m(x))−max(um(x)(y), 0)

t0
1− δ
δ
≥ t0 ln

(
1

δ

)
≥ ln

(
um(x)(m(x))−max(um(x)(y), 0)

um(x)(m(x))− um(x)(x)

)
=: K(y).

Proof of Proposition 5. Parts (i) and (iii) follow from the arguments given in the text

plus Lemma 2.

For part (ii), we first construct a sequence of approximate Q1Es as follows. For

each i = 1, 2, . . ., let ε(i) = 1
i

and take y1, y2 such that x∗ < y1 < y2 < x∗ + ε(i)

and such that, moreover, um(y2) (y2) < um(y2) (y1). Define x̃ik = y1 for all k > 0 and
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x̃i0 = y2. Then, for k = −1,−2, . . . define x̃ik such that m(x̃ik) is indifferent between

the policy x̃i(k+1) and the path (x̃i(k+2), x̃i(k+3), . . .). (We can show by induction that

x̃ik is uniquely defined and strictly decreasing in k for all k < 0, by Corollary 2.) Let

s̃i denote the associated successor function, i.e., s̃i(y) = x̃i(k+1) for all y ∈ [x̃ik, x̃i(k−1)).

We now make some useful observations. First, s̃i satisfies all the conditions to

be a Q1E for k < 0. Indeed, m(x̃ik) is indifferent between S(x̃i(k+1)) and S(x̃i(k+2))

by construction; by A2 and Corollary 2, she prefers these policy paths to any other

S(x̃ik′). Second, it can be shown by induction that x̃ik(y1, y2) is a continuous function

for all k < 0. Third, x̃ik ≤ m−1(x̃i(k+1)) for all k < 0; in particular, x̃ik ≤ mk(x̃i0) =

mk(y2). Fourth, x̃ik −−−−→
k→−∞

x∗∗.38

Next, we argue that y1, y2 can be chosen so that some element of the sequence

(x̃ik)k equals x. For an arbitrary initial choice of y1, y2 satisfying the requirements

above, let k0 be such that x > x̃ik0 . Now lower (y1, y2) continuously towards x∗ while

satisfying the conditions that x∗ < y1 < y2 < x∗ + ε(i) and um(y2) (y2) < um(y2) (y1).

Then x̃ik0(y1, y2) ≤ mk(y2) −−−−→
y2→x∗

x∗, so there are intermediate values of y1, y2 for

which x̃ik0(y1, y2) = x. Denote yi1 = y1, yi2 = y2, xik = x̃i(k+k0)(yi1, yi2), si =

s̃i(yi1, yi2). Note that xi0 = x for all i.

We now construct a true Q1E s by taking the limit of a subsequence of si. We

use a diagonal argument: xi0 → x0 = x by construction. For all i, xi1 is contained in

[x∗, x], so we can take a convergent subsequence such that xij1 → x1. Next, we take

a subsequence such that the xijl2 also converge, etc. By an abuse of notation, let xjk

denote the result of this argument, so that xjk → xk for all k.

The indifference conditions that made the si Q1Es under mi make s a Q1E under

m by continuity. To guarantee that s is a proper Q1E, we must also show that

xk > xk+1 for all k; xk −−−−→
k→+∞

x∗; and xk −−−−→
k→−∞

x∗∗.

For all these claims it is enough to show that there cannot be two sequences xik(i),

xik′(i) such that k(i) < k′(i) for all i but limi→∞ xik(i) = limi→∞ xik′(i) ∈ (x∗, x∗∗). In

turn, it is enough to show that this cannot happen for k′(i) = k(i)+1. Suppose it does,

and relabel the sequences as follows: yil = xi(l+k(i)). (If necessary, take a subsequence

such that yil → yl for all l.) Then we just have to show that y0 > y1. Clearly y0 ≥ y1

as yi0 > yi1 for all i, so suppose y0 = y1. If y2 > y1, then m(y0) = m(y1) must be

indifferent between y1, S(y2) and y2, which implies y2 < m(y1) < y1. But then m(y1i)

38If x̃ik −−−−−→
k→−∞

y < x∗∗, we obtain a contradiction by the same argument as in Proposition 2.
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would strictly prefer yi2 to S(yi2) for high enough i, a contradiction. Hence y1 = y2,

and by the same argument y2 = y3 = y4 = . . ..

This will lead to a contradiction by a similar argument as in Proposition 2. Let

V (y) = (1 − δ)Um(y)(S(s(y))) − um(y)(y) as in that proof. The fact that y1 = y0

implies that Vi(yi0) → 0. Now take an arbitrary sequence (g(i))i ⊆ N, and denote

yig(i) = yi0 − εi. Then, by the argument in Proposition 2,

Vi(yi0) ≥ (1− δ)εi
(
− ∂

∂x
um(yi0)(ỹ)

)
+ δ

(
V (yi0)−Mεi(E(S(yi1))− E(S(yi(g(i)+1)))

)
Vi(yi0) ≥ εi

(
− ∂

∂x
um(yi0)(ỹi)−

δ

1− δM(E(S(yi1))− E(S(yi(g(i)+1)))

)
for some ỹi ∈ (yig(i), yi0), where E(S(y)) = (1 − δ)

∑∞
t=0 δ

tst(y). Given some 0 <

ε′ < ε and i ∈ N, we say that g(i) ∈ N is ε′,ε-valid if εi ∈ (ε′, ε) and E(S(yi1)) −
E(S(yi(g(i)+1))) ≤ 1−δ

2δ

− ∂
∂x
um(yi0)

(yi0)

M
. Clearly, if there are 0 < ε′ < ε with ε small

enough, for which we can find valid g(i) for arbitrarily high i, we obtain a contradic-

tion, as lim inf Vi(yi0) > 0. If not, then there must be a fixed ε > 0 and a sequence

ε′i → 0 for which there are no ε′i,ε-valid values of g(i) for any i ≥ i0. If there are

arbitrarily high values of i for which (yik)i ∩ (yi0 − ε, yi0 − ε′i) is empty, then let yih(i)

be the last element to the right of this gap, i.e., yi(h(i)+1) < yi0 − ε, yi0 − ε′i < yih(i)

and relabel the sequence so that zi0 = yih(i). Then z1 < z0 = y0 = z−1, which leads

to a contradiction by our previous argument. If there are arbitrarily high values of i

for which there is g(i) such that εi ∈ (ε′i, ε), but E(S(yi1)) − E(S(yi(g(i)+1))) > C for

a fixed C, this implies that there are fixed C ′ and k0 such that yi0 − yi(g(i)+k0) > C ′,

and hence Vi(yi(g(i)+k)) ≥ C ′′ for some 0 < k ≤ k0. Note that k0, C, C ′ and C ′′ are

fixed even as we take ε to 0, which implies that ∂Vi(y)
∂y

must become arbitrarily large

and negative as i→∞, a contradiction.

Next, we show that s is a 1E in [x∗, x∗ + d−x∗ ] iff m(xn) < xn+2 for all n.

Note that m(xn) < xn+1 always holds (otherwise m(xn) would strictly prefer

xn+1 to S(xn+2)). If m(xn) > xn+2, m(xn) prefers m(xn) to xn+2; hence he prefers

S(m(xn)) to S(xn+2), and hence to S(xn+1). This implies that S(xn) cannot be a

Condorcet winner in I(xn), as the MVT must hold in this interval by Proposition 3,

and thus s is not a 1E.

Conversely, suppose that, for some x ∈ [xn+1, xn), I(x) prefers S(y) to S(xn+2) for

some y ∈ [xk, xk−1). If k ≤ n+ 2, this is impossible as all agents in [x− d−x ,m(x) + ε]
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would strictly prefer S(xn+2) to S(y). Suppose then that k ≥ n + 3. By the MVT,

m(x) prefers S(y) to S(xn+2). Suppose m(x) ∈ [xb, xb−1); we will argue that b = k. If

b < k, m(x) prefers S(xn+2) to S(xb) to S(y), a contradiction. If b > k, m(x) prefers

S(xn+2) to S(xk) to S(y), a contradiction.

Next, note that, if indeed m(x) prefers S(y) to S(xn+2), she then prefers S(y) to

S(xk−1), and so do all agents z such that y−d−y < z < m(x) by A2. Hence a majority

in I(xk−2) should prefer S(y) to S(xk−1). By the above argument, since y ∈ [xk, xk−1)

it must be that m(xk−2) ∈ [xk, xk−1), a contradiction.

Proof of Remark 1. This follows from e−rtuα(s(x, t)) = e−r̃
rt
r̃ uα

(
s
(
x, r̃

r
rt
r̃

))
.

Proof of Remark 2. If there are x1 < x2 < x3 ∈ (x− d, x + d) such that f(x1), f(x3)

< f(x2), then there is a local maximum of f in (x1, x3) ⊆ (x − d, x + d). Hence,

if there is no local maximum, there must be x∗ ∈ (x − d, x + d) such that f is

decreasing in (x−d, x∗] and increasing in [x∗, x+d). Suppose WLOG that f(x−d) ≤
f(x+d). By definition, F (m(x))−F (x−d) = F (x+d)−F (x−d)

2
; this implies f(x)m′(x) =

f(x+d)+f(x−d)
2

, given that m(x) = x. Since x is a stable steady state, m′(x) < 1, so

f(x) > f(x+d)+f(x−d)
2

≥ f(x−d). Hence x > x∗. But then f |(x−d,x) ≤ f(x) ≤ f |(x,x+d),

where the first inequality is sometimes strict. Hence F (x+d)−F (x) > F (x)−F (x−d),

which contradicts m(x) = x. The other case is analogous.

Proof of Remark 3. There must be d̂ such that f is strictly increasing in [x∗ − d̂, x∗]
and strictly decreasing in [x∗, x∗ + d̂]. Take d = d̂

2
. Then, for all d < d, f is strictly

increasing in [x∗−2d, x∗] and strictly decreasing in [x∗, x∗+2d], so m(x∗−d) > x∗−d
and m(x∗ + d) < x∗ + d. Hence there is a stable steady state in [x∗ − d, x∗ + d].

Additional proofs and robustness checks are found in the online Appendices B-E.
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